1. Course Description | COURS | SE DESCRIPTION FORM | | | | | |---|---|--|--|--|--| | Course Code and Title | KM392 CHEMICAL ENGINEERING LABORATORY I | | | | | | Course Semester | 6 | | | | | | Catalog Description (Content) of the Course | Laboratory applications of Physical chemistry, fluid mechanics and heat transfer principles. Evaluation of experimental data and results. Written presentation. | | | | | | Main Textbook | Handouts prepared by the instructor. | | | | | | Supporting Textbooks | Related text books. All the library and internet Web sources | | | | | | Course Credit (ECTS) | 4 | | | | | | Prerequisites of the Course
(Compulsory attendance should be
indicated here.) | There is no prerequisite or co-requisite for this course | | | | | | Type of the Course | Compulsory | | | | | | Instruction Language of the Course | Turkish | | | | | | Object and Target of the Course | Acquisition of ability to apply background knowledge about fluid mechanics, physical chemistry and heat transfer by experiments. Acquisition of experience by performing and designing experiments independently. Analysis of experimental data and learning methods of evaluation. Application and instruction of safety rules during experiments in the lab. To gain experience about group study. To gain written communication skills by preparation of lab reports. 1.Bench scale experimental set-up construction, hands-on | | | | | | Learning Outcomes of the Course | experience with laboratory work. 2. Guidelines and safety concepts for laboratory works. 3. To examine experimental data, interpret the results, gain report preparation technique. 4. Work as a team member. | | | | | | Mode of Delivery | The mode of delivery of this course is face to face | | | | | | Weekly Schedule of the Course | Week: General information about the laboratory Week: Team work principles and formation of teams, Laboratory Safety, Waste Management, Data Analysis, Report Writing Week: Phase equilibrium Week: Phase equilibrium Week: Thermodynamic property determination Week: Thermodynamic property determination Week: Surface chemistry Week: Surface chemistry Week: Fluid mechanics Week: Fluid mechanics Week: Heat transfer Week: Heat transfer Week: Chemical kinetics Week: Chemical kinetics | | | | | | Educative Activities (Credit will be determined based on the time given for these activities. Should be filled carefully.) | Theoretical Study Hours of Course Per Week Practicing Hours of Course Per Week Searching in Internet and Library Preparing Reports Mid-Term and Studying for Mid-Term Final and Studying for Final | | | | | | | | | | |--|--|--|--|----------|--|----------------|----------|-------------------------------------|-----|--| | | | Quant | | | Contribution | | | n | | | | | Mi | Midterm 1 | | | 10 | | (%) | | | | | | | Homework | | | | | | | | | | | | Assignment | | | 5 30 | | | | | | | | | ojects | | | | | | | | | | Assessment Criteria | | Practice
Quiz | | | 5 20 | | | | | | | Assessment Citteria | Qu | IIZ | | 5 | 20 |) | | | | | | | ten | Contribution of Interm Studies to | | 60 | | | | | | | | | | verall Grace ontribution | | | 40 |) | | \dashv | | | | | | amination | | | +(| , | | | | | | | Ov | Overall Grade | | | | | | | | | | | Att | Attendance | | | | | | \perp | | | | Workload of the Course | | Activity | | | Total Weekly Week Duration (in hour) | | Wo
in | Total
Workload
in
Semester | | | | | | Theoretical Study Hours of
Course Per Week | | | 14 | | 1 | 14 | | | | | We | Practicing Hours of Course Per
Week | | | | | 3 | | 42 | | | | | Reading | | | | | 0 | | 0 | | | | Lib | Searching in Internet and
Library | | | | | 2 | | 10 | | | | Ma | Designing and Applying Materials | | | | | 0 | | 0 | | | | | Preparing Reports Preparing Presentation | | | | | 0 | | 15 | | | | | Presentation | | | | | | - | 0 | | | | Mic | Mid-Term and Studying for Mid-Term | | | | | 5 | | 5 | | | | | Final and Studying for Final | | | | 10 | | 10 | | | | | Oth | Other | | | | 0 | | 1 | 0 | | | | 1 | Total work load | | | | <u> </u> | | 96 | | | | | 1 | Total work load/25 | | | | 1 | | 3.84 | | | | | 1 | ECTS of the course | | | | + | | | 4 | | | Course's Contribution To Program | | Number | | ım Outce | omes | 1 | 1 2 | 3 | 4 5 | | | | 1 | Adequate knowledge in mathematics, science are engineering subjects per | | | nd
rtaining to
ability to
informati | o
use
on | | X | . 3 | | | | 2 | Ability to identify, form solve complex engineer problems; ability to sele | | | |] | X | | | | | | | proper analysis and modeling | | | | | | |---------------------------------|--|--|--------|-------|-----|---|--| | | | methods for this purpose. | | | | | | | | | Ability to design a complex system, | | | | | | | | | process, device or product under | | | | | | | | 3 | realistic constraints and conditions, | X | | | | | | | | in such a way as to meet the desired | | | | | | | | 1 | result; ability to apply modern design methods for this purpose. | | | | | | | | | Ability to devise, select, and use | | | | | | | | | modern techniques and tools | | | | | | | | 4 | needed for engineering practice; | | X | | | | | | | ability to employ information | | | | | | | | | technologies effectively. | | | | | | | | | Ability to design and conduct | | | | | | | | 5 | experiments, gather data, analyze | | | | X | | | | 6 | and interpret results for | | | | | | | | | investigating engineering problems. | | | - | | | | | | Ability to work efficiently in intra- | | | | X | | | | | disciplinary teams. Ability to work efficiently in multi- | | | + + | | | | | 7 | disciplinary teams; | X | | | | | | | 8 | Ability to work individually. | | X | | | | | | | Ability to communicate effectively | | | | | | | | | in Turkish/English, both orally and | | | | | | | | | in writing; Ability to write effective | | 37 | | | | | | 9 | reports and comprehend written | | X | | | | | | | reports, make effective | | | | | | | | | presentations, | | | | | | | | | prepare design and production | | | | | | | | 10 | reports, give and receive clear and | X | | | | | | | - | intelligible instructions. Recognition of the need for lifelong | | | | | | | | | learning; ability to access | | | | | | | | | information, to follow | | | | | | | | 11 | developments in science and | | X | | | | | | | technology, and to continue to | | | | | | | | | educate him/herself. | | | | | | | | 12 | Awareness of professional and | X | | | | | | | | ethical responsibility. | | | | | | | | | Information about business life | | | | | | | | 13 | practices such as project management, risk management, and | X | | | | | | | | change management. | | | | | | | | | Information about awareness of | | | | | | | | 14 | entrepreneurship, innovation, and | X | | | | | | | | sustainable development. | | | | | | | | | Knowledge about contemporary | | | | | | | | 15 | issues and the global and societal | | | | X | | | | | effects of engineering practices on | | | | | | | | | health, environment, and safety. Knowledge about awareness of the | | | + + | | | | | 16 | legal consequences of engineering | X | | | | | | | | solutions. | 21 | | | | | | | 17 | Knowledge on standards used in | X | | | | | | | 1 / | engineering practice. | Λ | | | | | | Name of Lecturer(s) and Contact | 1. | Prof.Dr.Çiğdem Güldür, cguldur@ga | ızi ed | ıı tr | | | | | | 2. | Prof.Dr.Nurdan Saraçoğlu, nsarac@g | | | | | | | Information | 3. Prof.Dr. Nursel Dilsiz, ndilsiz@gazi.edu.tr | | | | | | | | | 4. Prof.Dr. Alper Tapan, atapan@gazi.edu.tr | | | | | | | | | | | | | | | |