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Abstract 

A numerical model of the main processes occurring in a two-stroke internal combustion engine is described. 
This model does not have many of the restrictions of previous models in the literature. Particular attention 
is given to modelling the duct flows using a flux conservative Lax-Wendroff type algorithm modified by the 
use of flux splitting and flux limiters. This makes the model well able to cope with very high specific power 
output engines. Numerical, convergence, and flux conservation properties of the model are illustrated and engine 
performances predicted by it are shown to compare well with experimental data from a high performance 125cc 
engine and a medium performance 100cc engine. © 1998 Published by IMACS/Elsevier Science B.V. 

1. Introduction 

This study describes a model of the fluid flow through a two-stroke, spark ignition internal com- 
bustion engine, a schematic diagram of which is shown in Fig. 1. The salient features of this engine's 
operation are: 

• The fresh charge fires near the top of the piston's stroke, forcing the piston to descend. This is 
the combustion phase. 

• When the top of the piston dips below the top of the exhaust port, gas from the cylinder box 
begins to flow into the exhaust duct. 

• As the piston descends further, it compresses a fresh charge in the crankcase, which begins to 
flow into the transfer duct, and from there into the cylinder box once the piston descends far 
enough to open the transfer port in this box. 

• The fresh charge entering the cylinder assists any favorable pressure gradient across the exhaust 
port in forcing the spent exhaust gases into the exhaust duct. Simultaneously, the cylinder is 
charged with a fresh mixture. This process is known as scavenging. 

• While the piston is ascending, it creates a low pressure in the crankcase box, and when the bottom 
edge of the piston uncovers the inlet port, a fresh charge of fuel/air is drawn into this box. 

• The piston rises, eventually closing both the exhaust and transfer ports so that the last part of the 
compression and the combustion takes place in a completely closed space. 
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Fig. 1. Schematic of two-stroke engine. 

Clearly, the amounts of gas flowing into and out of the two boxes are very dependent upon the gas 
dynamics in the inlet, transfer and exhaust ducts. 

The capability of a numerical model to predict accurately the performance of a high specific power 
output two-stroke internal combustion engine is very dependent upon the way in which duct flows 
(particularly, the exhaust duct flow) within the engine are modelled. The reason for this is that most 
engines of this type rely on pressure waves in the exhaust ducts to ensure that the cylinder is emptied 
of its exhaust gas and is filled with a large amount of fresh charge as efficiently as possible. Ideally 
then, a low pressure wave is required to arrive at the exhaust port just after it opens, to suck out the 
burnt gas, and a high pressure wave is required at that port some time before the exhaust port closes 
to stop part of the fresh charge escaping into the exhaust duct. It is crucial, therefore, to model these 
pressure waves accurately, because, as Blair [3] has noted, the wrong exhaust duct can cut an engine's 
output by 50%. 

Traditionally, many authors, for example Blair [3], Annand and Roe [1], and Benson et al. [2] have 
modelled duct flows using the mathematical method of characteristics. These methods fall into two 
categories: 

• Isentropic models, where the flow is assumed to be isentropic everywhere in the duct. 
• Non-isentropic models, where friction, heat transfer, and change of reference temperature within 

the duct are all considered. 
Isentropic models suffer from the limitation that a reference temperature for each duct is required as an 
input. The model then relates each duct temperature to its chosen reference temperature. Clearly, if the 
wrong reference temperature is specified, the wave speeds are in error, as are the model predictions. 
Whilst Blair [3] gives some guidance on choosing reference temperatures for different types of engine, 
the correct temperature is hard to predict for an "unknown" engine. Nevertheless, when this parameter 
is chosen correctly, model predictions of engine output can be very good. 

Non-isentropic models which use the method of characteristics do not suffer from the above restric- 
tion. However, the method of characteristics generally has the following limitations: 

• Difficulties in modelling shock waves, contact discontinuities and transonic flow without compli- 
cated "add-ons". Such phenomena occur in high performance engines. 
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• A need to "seed" the computational field with a large number of path-lines so that changes in 
temperature can be modelled correctly. 

• Numerical smearing caused by the need to interpolate characteristic positions between nodes, 
when the "mesh" method of characteristics (Benson et al. [2]) is used. The natural method 
of characteristics (Benson et al. [2]) causes problems with mesh points being non-uniformly 
distributed in both the space and time domains and is used infrequently for this reason. 

The main problem with traditional numerical methods which are non-characteristic based (e.g., the 
standard Lax-Wendroff family of methods (Press et al. [18])) has been their inability to model the 
consequences of step changes in duct end temperatures and pressures which occur as a result of 
ports opening and closing. Since the early 1970s, a class of numerical methods has become available 
which overcomes this inherent difficulty. This is the Total Variation Diminishing (TVD) class, so 
called because of its ability to contain the unstable oscillations produced by traditional methods. An 
excellent review of these and related methods is contained in Yang and Przekwas [25]. Winterbone 
and Pearson [24] used one such method for modelling flow in an engine duct, but their study was 
limited to a duct with constant cross-section area, and addressed flow resulting from a step change in 
inlet conditions at one end (the de Haller test). Whilst results were good, the present author found that 
methods which were satisfactory for this problem produced unacceptable oscillations when used for 
ducts with a cross-section area variation of the type found in two-stroke expansion chambers, driven 
by real engine cylinder temperature and pressure variations. More recently, Neumeyer et al. [16] and 
Chiou et al. [7] have used such methods to model what appear to be low specific power output engines. 
Both of these studies were restricted by some or all of the following assumptions: 

• The fluid obeyed perfect gas laws and the internal energy equation used was based on perfect 
gas relationships. 

• No account was taken of the changing composition of the gas as it progressed through the engine 
from a fresh charge to a partially burnt gas. 

• Isentropic flow equations applied at all duct boundaries, regardless of flow direction. 
• The "perfect mixing" assumption was made in the scavenging model. 

Corberan et al. [9] appear to have produced a comprehensive model of a high specific power output 
two-stroke engine, based on TVD numerical methods used to model duct flows, and a comprehensive 
scavenging model. There is not enough detail given in their paper to allow a reader to reproduce the 
results obtained. However, the model does appear to be restricted by the use of perfect gas relationships 
for fluid internal energy as a function of temperature. 

In this study, none of the above assumptions is made and the TVD-like numerical method used to 
model duct flows is based on a completely different algorithm from that used in any of the studies 
mentioned above. 

2. Mathematical and numerical models 

The following subsections describe models for each of the main processes which occur in a two- 
stroke engine. The study is restricted to single cylinder engines, containing ducts in which cross-section 
areas vary slowly in the axial direction. It is assumed that all velocities other than axial ones are 
negligible. 
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2.1. Gas properties 

The perfect gas equation 

P = p R T  (1) 

is assumed throughout the study. However, an invertible relation between the internal energy E, 
temperature T and gas purity w is required for the duct flow and boundary condition models. The 
simple perfect gas based relationship is inadequate over the 250-3000K operating temperature range 
of an engine (Winterbone and Pearson [24]), and a quadratic fit for E as a function of T is little better. 

Rational polynomials were fitted to appropriate data at 5K intervals from Keenan and Kaye [15] 
(for air), and Blair [3] (for exhaust gas) to produce a usable relationship between gas internal energy, 
temperature, and purity. The nonlinear least squares minimization technique due to Nelder and Meade, 
described in Press et al. [18] was used to carry this out. Fits with errors of less that 0.5% were obtained 
with both a quadratic numerator and denominator as follows: 

E : ItO + # I T  + #2 T2  

It3 + p 4 T  + Y 2 

with 

(2) 

#0--4.1780473 x l0 l° - 2.5514749 x 109w, 

#1 ---- 9.7194612 x 10 l° - 6.8103807 x 109w, 

/~2 z 4.2923950 x 107 - 8.7154810 x 106w,  

P3 -- 1.3956866 x 108, 

]A 4 : 2.2950588 x 104. 

This procedure allowed the required inversion of the function for T by solving a quadratic equation 
given E and w. 

Another variable required for the duct flow and boundary condition models is "7, the ratio of specific 
heats. This can be calculated by noting that 

R Cp _ l + - -  
Cv Cv 

and since 

Cv OT 
v 

Eq. (2) can be used to calculate the partial derivative, and hence Cv and % 

2.2. Duct flow model 

The equations describing conservation of heat, momentum, and internal energy of quasi one- 
dimensional compressible flow in a duct of varying cross-section area are known as the Euler equations. 
They can be written (Corberan et al. [9]) 
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where 

c -  4 / u I u I  
2D 

and 

+ 

I pUA 1 0 

= P ~ -  pAG 

pdO 

, (3) 

4 -  2f ~ Rlul(rwan -r~tag) 
D q ~ - I  

(4) 

from the Reynolds analogy (Poloni et al. [17]). Tstag is the gas stagnation temperature, which can be 
calculated from the gas temperature and velocity, whilst Twan can be eliminated by using the Reynolds 
analogy outside the duct if the external duct heat transfer coefficient and ambient air temperature are 
known. 

The numerical method chosen to solve these equations inside the ducts is called flux splitting. It 
follows closely the scheme outlined by Grossman and Wakers [11] which invokes a flux splitting due 
to Steger and Warming [21]. Its advantage lies in the fact that it is capable of selecting a physically 
admissible solution (Yang and Przekwas [25]), hence its use in this study. 

Denoting 

=pU and C = P E 0  

the flux terms in Eq. (4) can be written 

F,, ~2 

l _ + p  F~ = P = 2  (5) 

where the common area multiplier A has been cancelled out for the purposes of the following discus- 
sion. The last equality in this equation shows the form that the flux vector must take to allow a flux 
splitting to be carried out. The matrix Z must therefore be found. 

It is easy to verify that 

= 

0 

(7 - 3 ) v  2 

2 

_ T U E  + ( 7 -  2) U3- 
2 

satisfies this relationship. 

1 0 

( 3 - ~ ) U  ( ~ - 1 )  

(3 - 2 5 ) u  2 
~E + 5u 2 

(6) 
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This is actually the Jacobian transformation, assuming a perfect gas relationship for the internal 
energy, with one important difference. The variable 5 is not the ratio of specific heats. It is a variable 
calculated at each point which ensures that the relationship 

P = (~ ' -  1)pE (7) 

always holds. When ~ is required, it is computed from the known dependent variables p and P.  The 
latter variable is computed from Eq. (1), with T resulting from the inversion of Eq. (2). E is found 
from the relationship 

U 2 ~2 

pE = pEo - P T  = ¢ - 2-7 (8) 

2.2.1. Flux splitting 
The mechanics of flux splitting is discussed in Hoffman [14]. The matrix of eigenvalues correspond- 

ing to Z can be written 

= S - l  Z S ,  (9) 

where it can be shown that / 0 0 ) 
A =  0 u + a  o . 

0 0 U - ~  

In this relationship, 
2 = " ~ p / p .  (10) 

is not the local speed of sound, hut an analogous quantity based on 7. The columns of the matrix 
are the right eigenvectors of Z which can be written 

1 , 1 )  
U + 6  U - ~  , 

U 2 

2 

½u 2 

where 
~9 

- a_____2_~ + - -  
7 - 1  

From Eq. (9), 

2 = M ~ - ' .  

( l l )  

Flux splitting involves breaking the eigenvalue matrix A into one matrix containing only positive 
eigenvalues, and another containing only negative eigenvalues. This allows the matrix Z to be written 
as 

2 = 2 + + 2 -  
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where 

A, = U .  

and 

where the "+"  and " - "  superscripts refer to the parts of Z obtained using the positive and negative 
parts of A, respectively. Eq. (5) can then be used to break the flux vector into one pan attributable 
to the positive eigenvalues of A and another attributable to the negative eigenvalues of A. Grossman 
and Walters [11] show these components to be 

2~ [ 2 ( ~ -  1)A~ + A~ + A~] / 

± fla -c ± ~:F,, + ~ ( ~  - %)  , (12) 

p ~ Ai k~ , a -  / l  ± A± U Z F ± 2  p q - ~ [ V  ( 2 -  3) t ~ ] - [  2 q- 3)] 

A2 = U + a ,  A3 = U - a  

~ = ~(~z ± I~1) for i = 1,2,3. 

The spatial derivatives of fluxes are then computed using upwind discretization, relative to the signal 
propagation speeds. This flux splitting is based on 5 and was first proposed by Steger and Warming 
[21]. As it proved satisfactory for this study, no other form of flux splitting was investigated. 

2.2.2. Equation discretization 
A two step Lax-Wendroff type algorithm, second order almost everywhere in both space and time 

(Grossman and Walters [11]) was used to discretize the set of equations (3). Control volume averaging 
over each cell was a minor modification made to the algorithm as presented in [11]. Denoting Q to 
represent either p, ( or ¢, the algorithm is as follows. 

Let 

and 

QQ' = A~+,/2 F+ (Q2,/;) - A~ I/~ F+ (QL_,/2) 

QQ2 = A~+,/< (O~÷,/b-  A~_,/~F-(Q~,/2), 

where Q has been written as a bracketed argument of F instead of as a subscript, for readability and 
ease of notation. 

The first step of the algorithm is 

- O ~, ~ 0 @ Q , + Q Q 2  Qi = ~,i -- + ~0Q:~oo,, homo~e.eou ~ t,, i 

where the last term is the volume averaged appropriate friction or heat transfer term in Eq. (3) evaluated 
at the initial state Q~' then divided by vi, the volume of cell i. The second step can then be written 

00 ,  = A~+,/~F + (QL,/~) - A~-,/~ F+ @L,/2) 

and 
--+ --+ 

QQ~ = A~+,/~_r-(Q~+,/~)- A~_,/:~-(Q, l/2) 
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leading to 

(n ) (QQ, + 002) 
i = I Qi + Qi - 60 + 60Qinon_homogeneous , vi 

where the last term is the appropriate friction or heat transfer term in Eq. (3) evaluated at the inter- 
mediate state, Qi, then divided by vi. 

The non-homogeneous terms on the right hand side of the momentum equation in the set of equations 
(3) contain the term 

i+1/2 i+1/2 

f p a A d x =  J " 
i - I /2  i-1/2 

In the flux limiting process (Section 2.2.3), linear interpolation of pressure over each cell is established. 
If hP  is the difference in pressure between the boundaries of cell i, then the above expression can be 
integrated by parts to yield 

p i ( A i + , / 2 _ A i _ l / 2 ) + ~ s p ( A i + l / 2 + A i - 1 / 2  v i )  
2 cSx " 

Clearly, all geometry related quantities need to be evaluated only at the start of each simulation. 
The superscripts ± on the flux functions, F, indicate that they should be evaluated as in Eq. (12). 

Grossman and Waiters [11] recommended evaluating the dependent variables at the half node points 
using the extrapolations 

+ l (Oi+l  Oi+2). Q~+l/2 = Qi + ½(Qi - Qi-l) and Qi+l/2 = Qi+l q- 

This procedure failed when integrated into the duct flow model. It produced negative values of density 
because of the non-limiting nature of the extrapolation. It was therefore necessary to apply a flux 
limiter to the calculation of some variables at the half node points, and hence the corresponding 
fluxes. 

2.2.3. Flux limiters 
Yang an Przekwas [25] have surveyed a number of different flux limiters proposed for solving 

systems of hyperbolic conservation laws. The one which proved most successful in the numerical 
scheme of Section 2.2.2 was similar to that of Davis [10], which in turn is very similar to the 
original van Leer [22] MUSCL limiter. This limiter considers the variable in question at the points 
i - 1, i and i + l, deriving a linear relationship for the spatial variation of the variable in the interval 
(i - 1/2, i + 1/2) as follows. 

Let 

Ai+l/2 = Qi+l - Qi and 

Set 

and 

Ai- l /2  = Qi - Q i - l .  

&,~ = min(½1A~+l/2 + A~_,/21,21lA~_,/aP,21JAi+l/2l ) with 0.5 ~< 1 ~ 1 

sign(Ai+l/2 + Ai_I/2)S,~, if Ai+l/zAi_l/2 > 0, 
S = 0, otherwise. 
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Then 

I 
O,i+~r = O~ + a:S. la:l < ~7, 

thus establishing an interpolation over each cell for calculating the variables at the node halt-points: 

OT+l/2=Oi + ~ S, (13) 

- ½ s. (14) 

This interpolation produces a continuous variation in each of the properties chosen between i - 1/2 
and i + 1/2, allowing for possible discontinuities in the properties at the boundaries of this interval. 
Provided that the recommendations of Grossman and Walters [11] are followed in regard to using 
density, momentum and pressure (instead of internal energy /3) for the interpolation variables, the 
above scheme proved satisfactory for solving the flow equations at all interior points in the duct. 

2.2.4. Purit3, calculation 
The previous sections have described the modelling of compressible flow of a gas in a duct. The 

purity of the cylinder gas in a two-stroke engine varies between close to zero during the exhaust phase, 
and sometimes nearly one when the exhaust port closes. The purity at exhaust port closure determines 
how much cylinder charge is available for combustion, which, in turn determines the engine power 
output. Gas purity must therefore be calculated at each mesh point in each duct at the end of each 
time step, as well as in each "box". 

A similar conservation equation to Eq. (3) can be written for the pure (air) component of the gas: 

O(pu, A) O(,,~,,UA) 
- -  + - 0 .  ( 1 5 )  

80 ~:L' 

The two step discretization described in Section 2.2.2 can be used for this equation. Given that the 
gas purity at each node is known at the beginning of each time step, the fluxes of pw on the cell 
boundaries can be computed as follows. 

On the right boundary of the cell with node number i, the total mass flux is 

F+ (P;+I/2) -}- F -  (P/++I/2)" 

If this is possitive, the flux of pw is calculated by multiplying it by wi. If negatwe, this flux is 
calculated by multiplying it by wi+l. This avoids interpolating w as described in Section 2.2.3. 

Once the fluxes of pw are computed, the numerical scheme described in Section 2.2.2 can be used 
to compute a provisional value of pw at the end of the time step at node i. Since p can be calculated 
separately, w can then be found. The final values of pw and .w at node i can be found by applying 
the second step of the algorithm. 

2.2.5. Numerical stabili~ 
The above explicit algorithm is stable only for Courant numbers less than unity. The speed to use 

in this Courant number calculation is 

Max(l : • < ) .  

Time steps were chosen dynamically by using the maximum (in modulus) wave velocity at each 
mesh point in each duct, and the maximum Courant number chosen for the particular simulation, to 
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calculate a maximum allowable time step at each node. The time step used was the minimum of all 
these, ensuring stability at all nodes. 

Mean temperatures in the engine inlet and transfer ducts (Fig. l) are typically 60°C whereas those 
in the exhaust duct are typically 600°C. Numerical experiments suggested that to ensure that the time 
steps were not constrained severely by any one duct, the spatial discretization for the cooler ducts 
should be about half that of the exhaust duct. 

2.3. Boundary conditions 

As noted in Hoffman [14], boundary conditions are best expressed in terms of Riemann vari- 
ables, using the method of characteristics. There are two parts to describing these boundary condi- 
tions: a flow model, which describes flow between a duct and an adjacent box, and a compatibility 
model which allows calculation of the "incident" box Riemann variable and local reference speed of 
sound. 

2.3.1. The flow model 
The flow model needs to take account of the flow direction and whether or not the flow in the 

constriction or port between the box and the duct is subsonic or sonic. The models used in this study 
are modifications of those described by Blair [4]. The latter are extensions of those presented by 
Wallace and Nassif [23] and incorporate many of the ideas in Blair and Cahoon [5]. In line with these 
studies, it is assumed that the gas in each box is stagnant. The region between the stagnant air in 
the box and the entrance to the adjacent duct is assumed to take the form of a convergent~livergent 
nozzle, having one end in the box and the other end at the duct entrance. Typical time intervals in 
a simulation correspond to less than one degree of crankshaft revolution, and over this time scale, 
a steady flow in the nozzle is assumed. The cross-section area of the constriction in the nozzle is 
assumed to be equal to the physical engine port area multiplied by a discharge coefficient. All port 
areas are determined from the engine geometry and the relationship between the piston position and 
the angular displacement of the crankshaft. Discharge coefficients are functions of port area, flow 
direction, and pressure ratio across the port. They have been measured by Blair et al. [6] under a 
variety of situations. Average values from this reference have been used in this study. 

For gas flow out of a box, the flow between the box and the nozzle constriction is assumed to be 
isentropic. However, for flow between the constriction and the nozzle exit the isentropic assumption is 
replaced by the steady flow momentum conservation equation when the flow at the nozzle constriction 
is sub-sonic. The momentum equation is replaced by the assumption of sonic velocity at the vena- 
contracta when the flow is sonic. Wallace and Nassif [23] argued strongly that this was the correct 
assumption to make. 

For gas flow into a box, it is assumed that the flow is isentropic. When the flow is subsonic, it is 
assumed that the pressure at the nozzle exit is equal to the box pressure. This assumption is replaced 
by the assumption of sonic velocity at the nozzle constriction when the flow is sonic. 

The equations resulting from the models described above are solved using the Newton-Raphson 
technique. The inputs to these equations are the nozzle constriction area, the box temperature and 
pressure, and the value of the "incident" Riemann variable, at the duct end. Calculation of this last 
parameter is discussed below. The output is the value of the reflected Riemann variable, and, in the 
case of outflow, the reference speed of sound at the duct end in question. 
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The equations are notorious for generating spurious roots and are solved over the entire solution 
space at the beginning of each simulation. This allows strict controls and checks to be made on the 
solutions as they are generated sequentially. They are stored in a look-up table and a multi-dimensional 
linear interpolation is used to access them during the simulation. 

2.3.2. The compatibilit 3' relations 
When the non-homentropic mesh based numerical method of characteristics (Hoffman [14]) is 

applied at an interior duct node, the solution of the compatibility equations for each of the Rie- 
mann variables and the path line enable computation of the required dependent variables at the 
end of a time step. Since there is no duct section beyond the end node, one of the compatibility 
equations at this node disappears. For outflow from a box, gas flows into the duct, and there is 
no path line compatibility equation. However, as described above, the port flow equations provide 
two relationships involving the pressure and temperature in the adjacent box, the effective nozzle 
constriction area, the incident and reflected Riemann variables at the duct end node and the refer- 
ence speed of sound at that node. There are therefore still three equations which can be solved for 
these last three variables, assuming that the box variables are known. For inflow to the box, the 
flow equations do not provide a relationship for the reference speed of sound, but the compatibil- 
ity equation for this variable can be written since the path line is now contained within the duct 
interior. There are therefore enough equations to calculate all of the duct end variables in this case 
too. 

The mesh based method of characteristics requires that the state variables be continuous so that 
they may be interpolated on each cell over which the algorithm is applied. In the duct flow model of 
Section 2.2, discontinuities in the relevant variables are allowed only on cell boundaries, these being 
half node points. The duct was therefore discretized with grid points starting and ending half a mesh 
length in from each duct end so that the Riemann variables at the duct ends were calculated on cell 
boundaries. The piecewise linear interpolation for the variables p. ( and P resulting from the flux 
limiting process (Section 2.2.3) provided the required interpolation for application of the method of 
characteristics in the duct end cells. 

In order to construct the piecewise interpolation for cells adjacent to boxes, fluid states one half 
of a mesh length outside the duct end were required. After considerable experimentation this fluid 
state was assumed to be the same as that at the duct end. This state is available at the beginning of 
the time step since it is the state already computed by the method of characteristics at the end of 
the previous time step. The rationale for this choice was that having the same state outside the duct 
end would not affect fluid states in the duct. This procedure proved very stable and gave excellent 
results. 

The dependent variables at the end of the duct were used to calculate the fluxes at these ends. 
Because the duct ends are cell boundaries, these fluxes were used directly in the duct flow model 
described in Section 2,2. 

2.3.3. Boundao' state calculation procedure 
For a given box pressure and temperature, the procedure for calculating the dependent variables at the 

duct ends was iterative. This is because the numerical implementation of the method of characteristics 
was of the predictor corrector type (Hoffman [14]) and the associated equations needed to be solved 
in conjunction with the look-up table generated by the flow model. At the beginning of a time step, 
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the adjacent box pressure and temperature at the end of the time step are unknown. The procedure 
adopted for calculating both these and the duct end variables was to: 

1. Use linear extrapolation over the previous time step to estimate starting values of the box variables 
and the duct end variables at the end of the current time step. 

2. Keep the box pressure and temperature fixed and iterate as described in the preceding sections to 
estimate a consistent set of duct end variables at the end of the time step. Use these to calculate 
fluxes of mass and energy for the box state prediction model. A combination of successive 
substitution and Aitken acceleration proved to be a very efficient method for carrying this out. 

3. Use the mass and energy fluxes from step 2 in the box state prediction model (Section 2.4) to 
predict new estimates of box pressure and temperature. 

4. Iterate steps 2 and 3 until relative differences between successive box variables change by less 
than 10 -5 . 

2.4. Gas states in boxes 

Three distinct models were used to describe box gas states: 
• open boxes which have at least one port open, 
• closed boxes in which combustion occurs, 
• closed boxes where no combustion occurs. 

In each case the box volume may be fixed (e.g., box silencer) or it may vary (e.g., cylinder). A variable 
volume box has its volume controlled by a piston, a geometric relationship between crankshaft angle 
and piston position allowing calculation of the volume at any instant. 

2.4.1. Open boxes 
A box is open if at least one of its ports is open. The model for calculating the change in box 

state over a time interval is essentially the same as that used by many engine modellers, for example, 
Blair [3]. It assumes that the box has a uniform thermodynamic state at any particular instant and that 
the heat lost through the box walls in the process is negligible compared with internal energy, work 
and enthalpy changes over each time interval. 

Conservation of mass in a box over the time interval (j, j + 1) leads to the equation 

M j+l  = M j + m in - m °ut, ( 1 6 )  

where m in and m °ut a r e  the mass flows into and out of the box over the time interval. Likewise, 
conservation of internal energy in a box over the same time interval leads to the equation 

(ME)J+I  = ( M E ) j  _ [ ( m H ) O U t  (mH)in] _ , j+l ( v j + ,  ~ ( P  + PJ) - v J ) ,  (17) 

where E is the specific internal energy of the fluid in the box, H in and H °ut a r e  the specific total 
enthalpies flowing into and out of the box during the time interval, and the last term is the work done 
over the time interval. 

At the beginning of the time interval the box temperature, pressure and volume are all known, hence 
the corresponding gas mass and enthalpy can be calculated. 

The boundary condition model (Section 2.3) allows calculation of all gas states, mass fluxes and 
enthalpy fluxes at duct ends. By using the trapezoidal numerical integration rule, each enthalpy related 
term in Eq. (17) can be estimated by averaging the products of duct end mass flow rate and specific 
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enthalpy at the beginning and end of a time interval and multiplying the result by the time interval. 
As described in Section 2.3, the solution of Eqs. (16) and (17) needs to be carried out iteratively with 
the boundary condition equations. This is because the enthalpies and flow rates of the gas flowing into 
and out of the box are dependent on appropriate duct end states, which are in turn dependent upon 
box pressure and temperature. Since E = E(T)  (Section 2.1) and from the perfect gas relationship 
P = P(T ,  V),  Eqs. (16) and (17) can be solved implicitly for T at each iteration of the algorithm. 

It is assumed that the purity in the crankcase is uniform, hence the tbllowing equation can be used 
to calculate the box purity (W j+l)  at the end of each time step: 

in7 in . (l~llU) ./+' = (.&IIU) j + m t, -'m,°Utl] ".' (18) 

where it is assumed, to avoid an iterative process, that ~c in is evaluated at the end node of the duct 
providing inflow at the start of the time interval. 

2.4.2. Scavenging 
The scavenging model adopted is the two zone model similar to the one described in Blair [3]. Here, 

the fresh charge entering the cylinder is distributed in user supplied percentages to three locations: 
• a cylinder zone containing only fresh charge (the perfect displacement zone), 
• a cylinder zone containing only fully mixed gas (the perfect mixing zone), 
• the exhaust stream (short circuit). 

Mass and energy balances between the zones and flows to and from the cylinder allow computation 
of the perfect displacement zone's purity and the purity of the exhaust stream. The former will not 
be unity always because of some possible back flow from the cylinder to the transfer ducts. Such 
back flow was accounted for in the model. The percentages of the gas which flow into the perfect 
displacement zone and exhaust stream were assumed to vary linearly with the amount of gas which 
has flowed via the transfer port into the cylinder since that port opened. Constants for determining the 
relationship in this study were determined from experiments by Blair [3] and Corberan et al. [9]. 

2.4.3. The combustion model 
A comprehensive combustion model would increase the computational effort for a full engine simu- 

lation unacceptably. Provided that only gross engine performance parameters are required, conventional 
wisdom (Corberan et al. [9], Chiou et al. [7]) suggests that a single zone model is adequate. Over 
each time interval the equation describing the combustion process is similar to Eq. (17) except that 
there is no flow into the cylinder during combustion, and there is also heat lost through the cylinder 
surfaces (ql) and heat added by the combustion process (qc) over each time interval. Thus 

MJ+ ~ _ M j 

and 

(I~[E) j+' = (AIE) j + qc - q , -  4 (PJ+ '  + P J ) ( V  ;i+' - VJ). (19) 

When the exhaust port shuts, the amount of fresh charge which has entered the cylinder during 
scavenging is known from accumulating mass fluxes through the transfer and exhaust ports at each 
stage of the cycle, and the purity of this gas is known from repeated application of Eq. (18) during 
scavenging. The mass of fuel in the combustion chamber can therefore be calculated from this and 
the trapped air/fuel ratio, which is an input to the model. Blair [3] has estimated that losses due 
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to imperfect combustion leave about 85-90% of this mass available for complete combustion. It is 
generally accepted [7,9] that the fraction of this mass burnt, is related to the crankshaft angle (0) by 
the Weibe function 

J~//burnt 1.0 e x p [ - y a ( 0 - ~ ? c )  :ue+'] = -- , (hc ~. 0 ~ ~)c -~- 0b, (20) 

where Ya and Ye are experimentally determined values which are set at 8.0 and 1.0, respectively, in this 
study, 4)b is the total number of degrees of crankshaft revolution over which combustion takes place 
and Oc is the crankshaft angle at the onset of combustion. For spark ignition engines, Ob lies between 
50 ° and 60 ° and 0c corresponds to a crankshaft angle of about 10 ° before the piston reaches the top 
of its stroke. The heat added between crankshaft angles 0 j and O j+j corresponding to the beginning 
and the end of a time interval is therefore 

O5+ I 

= Cval / dA/burnt, qc 
, /  

4,J 

where Cval is the fuel calorific value. 
A number of correlations exists for ql, the heat lost through the combustion chamber walls. The 

one used in this study was developed by Rassweiler and Withrow [19], and allows the losses to 
be expressed in terms of the cylinder volumes and pressures at the beginning and end of the time 
interval. This and the calculation of qc allows the cylinder state at the end of each time interval during 
combustion to be calculated by solving Eq. (19) using successive substitution. 

Engine output was not terribly sensitive to the actual Weibe function parameters, but varied con- 
siderably with trapped air/fuel ratio, combustion efficiency and crank angle at ignition. 

During the period when the cylinder was closed, and no combustion was taking place, a polytropic 
relationship was used to calculate air states. The indices used were 1.25 for compression and 1.35 for 
expansion after Blair [3]. 

2.5. Relationships between port areas and piston position 

Simple geometry provides a relationship between piston position and crankshaft angle. Piston and 
rotary ports were divided into up to ten slices of equal widths and a table of cumulative area as a 
function of crank angle was constructed for each port. During simulation, the piston position was used 
to interpolate these tables and to calculate the instantaneous port areas. 

Reed ports were modelled using the instantaneous pressure difference across the port to drive a 
dynamic model of the vibrating reed petal. The theory is described in Hinds and Blair [ 13]. Calculations 
were terminated after the third mode of vibration. 

3. Numerical resultsmstandard problems 

The numerical embodiment of the theory presented above was applied to modelling steady isentropic 
flow in a venturi, lm in length, of minimum diameter 38mm and entering and leaving diameters 50mm. 
The constriction was located in the middle of the venturi. Figs. 2(a) and 2(b) show the pressure and 
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temperature distributions, respectively, in the venturi for a Courant number of 0.8, a 10mm duct 
discretization, and the flux limiting parameter, l = 0.55. Numerical experiments show that when the 
duct discretization is increased to 20ram and 1 ~ 0.75, significant oscillations in the temperature 
distribution downstream of the shock occur. Much lower amplitude oscillations are evident in the 
pressure distribution. These oscillations are not evident at a 10mm discretization. For l ~< 0.4, there 
is significant diffusion present at the leading edge of the shock. Regardless of mesh size, the shock 
width appears to be about 2½ mesh lengths. The difference between the numerical and exact solutions 
is three times as large as in Fig. 2 when a 20mm mesh size is used. However, the shock is always in 
the correct position regardless of mesh size, and the passage through extreme points is modelled well. 
There is no discernible difference between numerical solutions obtained for Courant numbers between 
0.1 and 0.9. The good agreement between the numerical and experimental results at the venturi end 
points shows the effectiveness of the boundary condition model. 

Qualitatively, the results are as good as or better than many of those described in the studies of 
Yang and Przekwas [25] which compared the performance of a number of TVD, ENO (essentially 
non-oscillatory), FCT (flux corrected transport) and Riemann solver based schemes applied to the 1D 
Burger's equation. Several of those schemes produced oscillations near wave fronts and others were 
highly diffusive, unlike the scheme discussed herein. 

The results are not as good as those obtained by Corberan et al. [8], who based their second order 
TVD scheme on the work of Roe [20] and Harten [12]. There appears to be negligible difference 
between their solution and the analytical one for a 20mm duct discretization of the above venturi 
problem, the shock width being only one mesh length. However, the algorithm involves considerably 
more computation than the one described in this study, and requires special additions to avoid entropy 
violating shocks. As mentioned earlier, the numerical scheme in this study is able to select the correct 
(entropy satisfying) solution. 

When compared with a numerical solution to the contact discontinuity problem using a flux corrected 
transport (FCT) scheme (Winterbone and Pearson [24]), the scheme described in this study exhibited 
no oscillations whereas the FCT scheme showed some oscillations on wave peaks immediately behind 
the start of a contact discontinuity. 

4. Numerical results---engines 

Engines are simulated by running them numerically for a number of revolutions and calculating all 
duct and box states at each time step. Time steps vary with crank angle and duct spatial discretization, 
but correspond typically to less than one degree of crankshaft revolution. Each simulation continues 
until steady power outputs are obtained on successive revolutions. High performance two-stroke en- 
gines have exhaust duct profiles similar to those shown in Fig. 1. The largest diameter may be of 
order 100mm whilst the smallest may be of order 20mm. The change between these two extreme 
diameters can take place over a length of less than 50mm. Numerical experiments show that to obtain 
results which exhibit little variation with mesh size, such ducts require spatial discretizations between 
10ram and 20mm, depending on the rapidity of duct cross-section area change. Clearly, larger mesh 
sizes could be used in ducts of less variable cross-sections. For ducts like those in Fig. 1, a variable 
discretization could be used to cater for regions of rapid cross-section area change. As shown in Fig. 3, 
there was little variation in power between simulations using 10mm meshes and those using smaller 
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ones in the simulation of a 125cc Rotax model R128 engine operating at 12000 rpm. Similar results 
were obtained for other engines over their operating speeds. As 10ram meshes give rise to typically 
100 cells in an exhaust duct, and a combined total of 30 cells in the remaining ducts, variable mesh 
length within a duct was not implemented in this study. 10mm meshes were therefore used in the 
remaining simulations. 

Fig. 4 shows little variation of power output with Courant number for the Rotax engine running at 
12000 rpm. This and other numerical experiments led to a Courant number of 0.8 being used in the 
remaining simulations. 

In Fig. 5, the difference in convergence behaviour with respect to numerical revolutions of the 
Rotax engine running at 12000 rpm and a reed valve induction Yamaha 80cc model B85 engine 
running at 13000 rpm is demonstrated. The Yamaha engine simulation converges in a much more 
oscillatory fashion than does the Rotax engine simulation. In general, reed valve induction engine 
simulations tend to converge in an oscillatory fashion whereas rotary valve and piston port induction 
engine simulations tend to behave like the Rotax simulation in Fig. 5. This convergence behaviour 
highlights the danger of terminating the simulations too early. The termination criterion used related 
to relative power differences over successive numerical revolutions being lower than some arbitrarily 
small number, usually 10 -4. A check was also made that over the last numerical revolution, the relative 
differences between gas masses entering and leaving each duct is smaller than 1 0  - 4  , thus ensuring 
mass flux conservation in each duct and in each engine box. 

The remainder of the curves show the convergence behaviour of engine mass balance, and expansion 
chamber mass balance. Engine mass balance refers to the relative difference in the amounts of gas 
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I01 

entering the inlet port and leaving the exhaust port over an engine revolution. Duct mass balance refers 
to the relative difference in the amounts of gas entering the exhaust duct and leaving it over an engine 
revolution. The mass balance convergence behaviour in Fig. 6 for both engine simulations mirrors 
the corresponding power convergence behaviour, albeit at lower relative amplitudes of oscillation. 
Figs. 7(a) and 7(b) show the corresponding duct mass balances. Fig. 7(b) shows that these balances 
for both engines can be made to decrease to arbitrarily small values by increasing the number of 
numerical revolutions simulated. This is to be expected, given that a flux conservative numerical 
method has been used to model duct flows. 

To obtain engine and duct mass balances as low as 10 -6 , it is often necessary to run the simulation 
for over 50 revolutions. By this time, the power is usually changing from revolution to revolution 
by less than 0.01%. Forty seven numerical revolutions of the Rotax engine at 12000 rpm took 145 
CPU seconds on a 166MHz Pentium computer. The variation in CPU time is approximately linear 
with engine speed and approximately quadratic with the duct discretization, indicating that most of 
the CPU time is spent in the duct flow modelling routine. Tests show that approximately 10-15% of 
the simulation time is spent in boundary condition computation. Simulation studies with the model 
show that arbitrarily small energy balances between fluid inflow/outflow for each duct can also be 
obtained if the friction factor is set to zero. The value used in the results presented here was 0.004. 
Comparable momentum balances can be achieved for zero friction factor and constant duct cross- 
section. Energy and momentum balances need to be conducted on the entire duct (not just the fluid 
inflow/outflow) when these two effects are present. In such cases, the overall balances are still less 
than 10 -5 . 
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Pairs of simulations run using values of the flux limiter parameter, l, between 0.5 and 1.0 produced 
power variations of less than 1% in the many cases tested. In animations of the exhaust duct temper- 
ature and pressure waves, no oscillations in either variable was evident for the many values of the 
limiter tested, in contrast to the results for the venturi in Section 3. However, all remaining numerical 
experiments described herein were carried out with l = 0.55. 

The simulation has been tested on a large number of engine configurations and has, in 99% of cases, 
converged to a steady power output. Corberan et al. [9] and Blair [3] noted that sometimes a periodic 
variation in output of relatively high amplitude occurred which no amount of numerical ,evolutions 
seemed to cure. These occurred in early studies with this model and were found to be due to one or 
more of the following: 

• A mismatch in the relative mesh sizes in the hot and cold ducts, hence the actions relating to this 
taken in Section 2.2.5. 

• Inaccurate modelling of flow reversals at ports. Considerable time was spent constructing a robust 
port boundary condition calculator which was very sensitive to flow direction reversals. 

• Insufficient damping in the reed valve models. A totally undamped model often produced almost 
random fluctuations in power from revolution to revolution unlike the periodic variations which 
Corberan et al. [9] suggested might be due to problems with their reed petal vibration model. 
Their model appears to be almost identical to the one used in this study. The minimum amount of 
damping to stabilize the convergence was added to each mode of vibration in the study described 
herein. The slow convergence of the B85 engine shown in Figs. 5-7 could well be due to its reed 
induction system; the important point being that it does converge to arbitrary precision eventually. 

In the 1% of cases that did not converge, periodic fluctuations in power with numerical revolution of 
less than 0.5% occurred. These were eradicated dynamically by sensing the oscillations and reducing 
(by about 5%) the maximum allowable Courant number. 

5. Experimental results 

Figs. 8 and 9 show comparisons between simulated and experimental results for a Parilla 100cc 
model T75 engine and the Rotax engine mentioned above. 

The experimental results for the Parilla were obtained from an eddy current dynamometer with a 
high quality load control system. A key feature of the results is that the model predicts the position and 
magnitude of the peak power, indicating that the wave speed modelling mechanism is very good. From 
the results taken during a number of different runs made under the same conditions, the dynamometer 
appeared to have an error of less than about 8%. Apart from experimental error, the discrepancies 
between experiment and model predictions away from the position of peak power could well be due 
to uncertainties in the following parameters used in the model: 

• the Weibe function parameters (Section 2.4.3), 
• the scavenging parameters (Section 2.4.2), 
• the combustion efficiency, 
• the air-fuel ratio, 
• the assumed discharge coefficients (Section 2.3.1), 

all but the last of which vary to some extent with engine speed. Considering that mean estimated 
values for these were taken from the literature, and no attempt was made to "tune" these values to 
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match the experimental results, the agreement between the latter and the results predicted by the model 
is quite good. 

Raw experimental data for the Rotax engine were collected from a track-side data acquisition system 
monitoring sensors in a go-kart, and processed to provide the results shown. The need for drivers to 
keep the engine in its power band reflects the narrow range of engine speeds over which the data are 
available. Given that the errors which can occur in this type of testing are quite high, the simulated 
and experimental results are in good agreement. Possible sources of error are the same as those stated 
above for the Parilla engine, plus additional ones related to the inherent errors in an indirect data 
acquisition system of this type. 

An engine simulation needs to be started with all state variables initialized in all boxes and ducts. 
The final convergence should be independent of these initialized states. Tests showed that this was 
not the case for the Rotax engine in this study, and other engines of similar specific power output. 
The effect can be seen in Fig. 9~ where the triangular point was obtained by starting the simulation 
at 13500 rpm using the duct and box states attained after converging the simulation at 13000 rpm. 
On the other hand, the cross at 13000 rpm was obtained by starting the simulation at that speed 
using low temperatures and pressures for the initial box and duct states. Exhaustive tests showed 
that: 

• There seem to be two solutions which exist only over a narrow speed range, close to the peak 
engine power and at speeds beyond it. 

• Only high specific power output engines exhibit this behaviour. For example, it proved impossible 
to obtain more than one solution for the Parilla engine at any speed. 

• Points like that represented by the triangle in Fig. 9 were not obtained if the simulation was 
commenced at a high speed (for example, 15000 rpm for the Rotax engine) and subsequent 
simulations were at lower speeds with no duct and box state variable re-initialization. 

• Curves similar to that represented by the crosses in Fig. 9 appear to match experimental results, 
although some go-kart drivers have reported inconsistent power surges beyond the generally 
accepted engine power band. This second solution may explain these surges. Careful testing with 
a dynamometer may be able to resolve this problem. 

• Spoiling the scavenging characteristics in the dual solution region removes the upper solution. 
• Both solutions show that the power drops very sharply from its peak, in agreement with the 

simulation results shown by Corberan et al. [9] who modelled duct flows using a totally different 
TVD method than that used in this study. 

The tempting explanation that one of the two solutions is physically unreasonable is somewhat nul- 
lified by the fact that the flux splitting algorithm is supposed to produce only physically reason- 
able solutions (Yang and Przekwas [25]). The flux limiting procedures and conservative Courant 
numbers (0.8) adopted in this study decrease the likelihood of an entropy decreasing solution oc- 
curring. These statements can be proven for linearized equations only, so there is only a very 
small chance that one of the solutions is physically unreasonable. However, despite exhaustive 
tests, no numerical evidence was found for this conjecture. The matter is being investigated fur- 
ther. 

Apart from the above considerations, the match between experimental and simulated results for the 
Rotax engine is quite reasonable, given the possible errors in the experimental equipment. Much more 
accurate data needs to be acquired, over larger engine speed ranges before the model parameters can 
be tuned further. 
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6. Conclusions 

The conclusions from this study can be summarized as follows: 
• The comprehensive simulation model of the two-stroke engine demonstrates good numerical 

convergence to its solutions and conserves mass, momentum and energy to arbitrary precision in 
each engine duct, and through the chambers of the engine itself. 

• Simulations of reed induction engines appear to take longer to converge than those of rotary valve 
and piston ported engines. 

• The model sometimes predicts two different power curves in a small region above the engine 
speed giving peak power, depending on the initial states of box and duct variables. Although 
there is a small body of evidence to suggest that both these solutions may exist, this needs much 
closer examination. 

• Apart from the last point, good agreement between simulated and experimental results was ob- 
tained for two engines of widely differing performances. 
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Appendix A 

A.1. Nomenclature 

A 
a 

Cp 

Cv 
D 
E 
Eo(E + U2/2) 

f 
& 
&(f,u 2 + P) 
&((,,Eo + P)v) 
G(4fu]ur/(2D)) 
H(E + P/f,) 
Ho(H + U2/2) 
l 
M 

cross-section area of duct or port (m2). 
local speed of sound in gas (ms-l) .  
"pseudo" local speed of sound (see Eq. (10)) (ms-l) .  
specific heat at constant pressure (Jkg- lK-J) .  
specific heat at constant volume (Jkg-JK-l ) .  
diameter (m). 
internal energy per unit mass (Jkg-l).  
stagnation internal energy (Jkg-l) .  
friction factor (-). 
mass flux (kgm -2 s-  1). 
momentum flux (kgm -I s-2). 
stagnation internal energy flux (Jm -2 s-J). 
friction contribution to momentum equation (ms-Z). 
enthalpy per unit mass (Jkg-l).  
stagnation enthalpy (Jkg- l). 
flux limiter variable (Section 2.2.3) (-). 
mass of fluid in box (kg). 
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P 
Q 
4 
R 
I '  

T 
U 
V 
U 

~U 

,9:' 

2 

mass of fluid in duct (kg). 
local (superposition) pressure (Pa). 
one of p, ~, ~, P.  
heat transfer rate per unit mass of fluid (Wkg-l) .  
gas constant for given gas ( Jkg- lK- l ) .  
pressure ratio across venturi tube (-). 
temperature (K). 
particle velocity (m/s). 
box volume (m3). 
cell volume (m3). 
box purity (kg air/kg gas). 
duct gas purity (kg air/kg gas). 
spatial co-ordinate (m). 
flux-split matrix (see Eq. (6)). 

A.2. Greek symbols 

d0 

A 

p 

0 

 (pEo) 

spatial discretization step (m). 
time discretization step (s). 
ratio of gas specific heats (-). 
"pseudo" specific heat ratio (see Eq. (7)) (-). 
elements o f / 1  (ms-  1). 

matrix of eigenvalues of Z. 
gas density (kg m-3). 
time (s). 
Crankshaft angle with datum at the top of the piston stroke (degrees/radians). 
momentum (kg m -2 s-  l ). 
stagnation internal energy per unit volume (jm-3). 

A.3. Subscripts 

amb calculated at ambient air states. 
i cell number. 
stag calculated at fluid stagnation states. 
wall calculated at wall states. 
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