	Course Description Form	
Course Code and Name	BM224 PROGRAMMING LANGUAGES	
Course Semester	4	
Catalog Content	$\begin{array}{l}\text { Conceptual study on syntax, semantics and application of } \\ \text { programming languages, Lambda analysis and functional languages, } \\ \text { basic notions of expressive semantics and language features, the } \\ \text { theory of autocorrelation, first order logic and declarative languages, } \\ \text { harmonization of semantic definitions. }\end{array}$	
Textbook	$\begin{array}{l}\text { Sebesta, R. W., \& Mukherjee, S. (2015). Concepts of programming } \\ \text { languages (Vol. 8). Addison-Wesley. }\end{array}$	
Supplementary Textbooks	$\begin{array}{l}\text { Darnell, P. A., \& Margolis, P. E. (2012). Software engineering in C. } \\ \text { Springer Science \& Business Media. } \\ \text { Comparative Programming Languages (3rd Edition) by Robert G. }\end{array}$	
Clark, 2000.		

		Activity	Total Number of Weeks	Duratio (weekly hour)					
		kly Theoretical Course	14	3					
	Wee	kly Tutorial Hours	0	0					
	Rea	ing Tasks	10	4					
	Stud		10	3					
Workload		rial Design and mentation	0	0					
	Rep	rt Preparing	0	0					
	Prep	aring a Presentation	1	12					
	Pres	ntations	1	1					
		rm Exam and aration for erm Exam	1	10					
		Exam and aration for Final	1	15					
		(should phasized)							
	Tota	Workload							
	Tota	Workload / 25							
	Cou	se Credit (ECTS)							
	No	Program Outcomes					3		5
Contribution Level Between Course Learning		Sufficient knowledge science and computer to apply theoretical an knowledge in these ar solve engineering pro	on mathem engineering d practical as to mode lems	atics, ; ability 1 and					
	2	Ability to identify, de solve complex engine ability to choose and analysis and modelling purposes	ine, formul ring proble pply approp methods f	ate and ms; oriate or these			X		
	3	Ability to design a co process, device, softw product under realistic circumstances to mee requirements; ability design techniques for	mplex syste are, algorith constraints certain a apply mod his purpose	m, m, or and dern			X		
	4	Ability to choose, dev techniques and tools n engineering applicatio effectively use compu	elop and us ecessary fo ns; ability t ing technol	modern ogies					X
	5	Ability to design and or experiments to solve problems, collect and evaluate and analyze solutions	mplement e engineeri interpret da he results of	systems g ta to		X	X		
	6	Ability to work effect intradisciplinary and teams or individually	vely in nterdisciplin	nary					

7	Ability to efficiently prepare, evaluate and interpret reports		X				
8	Ability to make presentations and conduct effective verbal and written communication in Turkish and English		X				
9	Awareness of the necessity of lifelong learning; ability to access information, follow scientific and technological developments; ability to perpetually renew oneself						

